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Figure 1: AI-Instruments embody prompts as interface objects, informed by three principles: reification of user intent, reflection,
and grounding (left). Visual overview of four technology probes of AI-Instruments – generative containers, transformative
lenses, prompt fragments, and fillable brushes (right).

Abstract
Chat-based prompts respond with verbose linear-sequential texts,
making it difficult to explore and refine ambiguous intents, back
up and reinterpret, or shift directions in creative AI-assisted design
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work.AI-Instruments instead embody “prompts” as interface objects
via three key principles: (1) Reification of user-intent as reusable
direct-manipulation instruments; (2) Reflection of multiple interpre-
tations of ambiguous user-intents (Reflection-in-intent) as well as
the range of AI-model responses (Reflection-in-response) to inform
design "moves" towards a desired result; and (3) Grounding to in-
stantiate an instrument from an example, result, or extrapolation
directly from another instrument. Further, AI-Instruments leverage
LLM’s to suggest, vary, and refine new instruments, enabling a
system that goes beyond hard-coded functionality by generating
its own instrumental controls from content. We demonstrate four
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technology probes, applied to image generation, and qualitative
insights from twelve participants, showing how AI-Instruments
address challenges of intent formulation, steering via direct manip-
ulation, and non-linear iterative workflows to reflect and resolve
ambiguous intents.
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1 Introduction
Despite the immense promise of generative AI, it remains challeng-
ing for people to express and refine their true intents via multi-
ple rounds of textual chat-prompts [48, 78], as well as to pursue
multiple-alternative paths forward within a linear conversational
metaphor. Users face numerous difficulties (e.g., [64]): articulat-
ing their intent in a few words of written text (intent formula-
tion); correctly expressing sufficient detail to express, refine, and
re-formulate their true intent (intent disambiguation); iterating over
the model’s response to approach a desired outcome (steering); and
navigating higher-order challenges of interaction with AI, such as
discovering what one can do with AI—or even what one "actually"
wants to achieve (intent resolution)—within the linear sequential
limitations of chat-based exchanges (interaction workflow).

Although existing work in human-computer interaction and ar-
tificial intelligence (HCI+AI) addresses some aspects of these chal-
lenges in piecemeal fashion through novel interaction techniques
with generative AI (e.g. [17, 50]), we argue here that AI-Instruments
offer a novel approach to gain traction on many aspects of these
challenges by appropriating and re-casting the principles of in-
strumental interaction [5, 7] to the modern context of generative
HCI+AI user experiences. Quoting Beaudoin-Lafon et al. [6], the
value of proposing such interaction model is to "change-oriented
perspective by providing HCI researchers with conceptual tools for
analyzing technologies in use or exploring novel future solutions".
Triangulating theory, artifact, and empirical evaluation has strong
benefits for advancing HCI research [47].

Instrumental interaction offers a particularly compelling concept
from the HCI literature to revisit in the context of generative AI be-
cause it offers principled interaction dynamics about how software
functionalities ("commands") combine with content (the "objects"
those commands act upon). While in the past these dynamics had
to be hand-designed and hand-coded for specific object types and
application settings, the advent of generative AI makes it plausible
that the polymorphic nature of high-level commands and flexible

content representations will unleash exciting new possibilities for
HCI+AI graphical user interfaces.

In particular, our approach embodies AI prompts as graphical
interface objects and adapts the instrumental interaction model for
Generative AI by considering the following three principles:

(1) Reification of user intent into instruments: turning user-
intent from varied abstractions and granularity levels into
one or more reusable graphical interface object(s);

(2) Reflection: the consideration of multiple alternatives that
reflect [61] both ambiguous intents as expressed by the user
(reflection-in-intent), and ambiguous interpretation of AI re-
sponses (reflection-in-response), to steer content generation
towards a satisfactory result; and finally

(3) Grounding: instantiating an instrument from a specific
scope of selected content, from an example result, or even
from another instrument.

Via a technology probe [34] that implements four complemen-
tary examples of AI-instruments, we illustrate how they can ame-
liorate many design challenges plaguing today’s linear-chat-based
AI interfaces: intent formulation, prompt engineering, direct ma-
nipulation and steering, non-linear iterative workflows, and intent
resolution. We also present initial reactions of 12 participants who
tried our AI-instruments, yielding qualitative insights on the value
and limitations of our AI-instruments interaction model, as com-
pared to conversational prompting.

Designed through the lens of the three principles, we built a
set of technology probes focused on image generation. The goal
of these four exemplar AI-Instruments is to demonstrate the new
interaction capabilities and affordances of our model: (1) Fragments
decompose gen-AI prompts into reified reconfigurable objects, af-
fording reflection-on-intent on the latent prompt structure, and
grounding generation by dragging fragments from one object to
another. (2) Transformative Lenses generate new content grounded
in one or more content elements, which allows flexible recomposi-
tion of scenes and (if desired) continuous updates of the result. (3)
Generative Containers create multiple alternatives of images, text,
and even instruments or fragments. (4) Fillable Brushes encapsulate
a prompt, filled by selecting example content with the brush (or by
directly typing the prompt for a new action). Using the instruments
in synergy—where outputs from one instrument form input for the
next, or even using instruments to create new meta-instruments—
affords expressive degrees-of-freedom for fine-grained steering of
generative AI.

In summary, our high-level contributions include the following:
• Extend the classic instrumental interaction model [5] to gen-
erative AI, emphasizing three driving principles: reification
of user intent, reflection, and grounding;

• Demonstrate four AI-instruments via technology probes,
showing how these driving principles manifest in their de-
sign and implementation;

• Provide initial reactions from 12 users when shifting from
a linear-chat interaction paradigm to direct manipulation
through AI-instruments, showing that it can address a num-
ber of human-AI interaction challenges.

In the following sections we discuss related techniques across the
HCI, Human-AI interaction, and design literature. This is followed
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by an Example Walkthrough of our AI-instruments, a wider discus-
sion of Instrumental Interaction with AI, and further details of our
Four Exemplar AI-Instruments: Fragments, Transformative Lenses,
Generative Containers, and Fillable Brushes.We then present a qual-
itative Study of these AI-Instruments in comparison with textual
prompting, and finally close with a Discussion and Future Work.

2 Related Work
We first discuss the state of human-AI interaction, articulating
it around five core challenges. Then, we motivate the need for a
more general interaction model and point to research in design and
creativity grounding two principles we introduce.

2.1 Human-AI Interaction
Recent work explores the difficulties users face when interacting
with generative AI via prompting [48, 54, 64, 78]. Earlier research
identified barriers that arise (for example) in end-user program-
ming [42] and, more generally, bridging the gulf of execution and
the gulf of evaluation [51]. We organize emerging research for in-
teraction with generative AI under five core Challenges (C1-C5)
faced by users, and discuss later in the paper how our interaction
model addresses each.

(C1) Intent formulation via prompting, solely using natural
language, can be challenging when the outcome is hard to describe
in words. Users may lack the vocabulary to describe visual styles,
or the high-level impressions they seek to achieve. Researchers
studied thousands of prompts to generate images [45] to develop
guidelines for prompting and parameter selections. They coupled
prompting with images to offer richer multimodal intent formula-
tion. PromptCharm [72] leveraged a large image database to help
users find the right style of images and incorporated interactive
techniques – such as linking a prompt fragment to the correspond-
ing part of the generated image, to provided richer solutions for
users to formulate their intent. Similarly, DesignPrompt [54] affords
expressive multi-modal prompt construction. Such research seek-
ing to expand the modalities we have to communicate with models
beyond text input is particularly important [44] for multimodal
outputs such as generated videos [70], 3D objects [55], and virtual
worlds [59].

(C2) Intent disambiguation is the skill of describing one’s
intent with enough specific detail for AI to produce the intended
result. Much past work on prompt engineering across several fields
of research tackles this challenge, with research probes of this is-
sue [78] suggesting templates and guidelines [9] for users to provide
the information they might have difficulty thinking about upfront.
Beyond prompt engineering, the HCI community explores different
representations to facilitate communicating context to the system.
For example, Graphologue [37] represents a prompt as an inter-
active node-link diagram that users can expand and complete to
incrementally add context to their intent. Such work also addresses
the ambiguity of natural language by enabling users to unpack
certain parts of their intent and disambiguate them by adding more
information. Promptify [10] organizes generated content on a can-
vas based on a person’s preferences and suggests alternatives –

leading to an iterative loop with the user refining, selecting, and
discarding alternatives of prompts and content.

(C3) Intent resolution is the challenge users confront to deter-
mine what outcomes may or may not match their original intent.
Difficulties here may stem from an ambiguity of intent in the users’
mind (e.g. a user might realize "I am not even sure what exact outcome
I want"). This problem, as a well-known attribute of challenging
creative design work [12, 28, 61], is certainly not unique to AI but
may be exacerbated by the relative novelty, black-box nature, and
rapidly accelerating capabilities of modern AI models [11]. How-
ever, further difficulties may arise from people’s lack of knowledge
of what an AI model can or cannot do. Here, approaches from
graphic design may help users explore possible outcomes, such as
CreativeConnect [16], which extracts keywords, and text descrip-
tions from a set of reference images and facilitate recombination
and reuse. Other work shows the possibilities of what users can ask
via prompt-space exploration [2], or through interfaces that reveal
what results a user can generate [65].

(C4) Steering the result of generative AI to get closer to either
what the user initially imagined or to an unforeseen result assessed
as satisfactory is a fundamental human-AI interaction mechanism.
The topic has been studied for multiple decades in multiple field
and referred to as human-in-the-loop [73] and mixed-initiative
interfaces [32]. Within the context of generative AI, research on
the topic has centered on human-AI co-creation [20]. Researchers
developed human-AI co-creation interfaces for specific activities
such as drawing [52], crafting images [17] and writing stories [18,
79]. These interfaces either surface generative AI capabilities as
graphical interface elements such as a button to generate a character
for a story [79], or propose custom graphical widgets to specify
constraints or parameters of the content to be generated by the
model such as an interactive line chart depicting the narrative arc
of the story [18].

Recent research has begun to explore more generic interaction
solutions to the prompting chat-based experiences incorporated
in most mainstream products today. Steering content generation
in conversational prompting amounts to a linear trial-and-error
process, in which users type a prompt, and then evaluate its result.
They then must either rerun the same prompt to get a new result
(since generative AI is non-deterministic); or edit the prompt to get
an iteration over the prior result. By building upon principles of
direct manipulation, DirectGPT [50] offers an early glimpse of an
alternative interaction human-AI co-creation paradigm based on
the principles of direct manipulation and surfaced to users with
graphical widgets (e.g. buttons) that might generalize to a wider
range of outputs and applications. Our research extends this ambi-
tion via instrumental interaction [5], yielding a novel interaction
model that can provide the community with both evaluative (as-
sessing novel interaction techniques) and generative (inspiring the
design of novel interaction techniques) power.

(C5) Interaction workflow models based on conversation with
generative AI are inherently linear. Research started to investigate
non-linear interaction workflows with generative AI. In particu-
lar, DeckFlow [19] relies on mood board type interaction and also
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breaks the silo of different models. Sensecape [66] and Grapho-
logue [37] leverage additional non-linear metaphors to enable peo-
ple to perform non-linear interactions with AI. These systems focus
on a specific metaphor for conversation with LLMs, laying out
prompts and responses as a graph in a canvas. Graph structures
can also function as an intermediary representation facilitating
prompt steering, by breaking down text prompts into hierarchical
structures of granular elements [76]. Similarly, tree structures en-
able traversing alternative representations of generated content,
where sub-nodes represent distinct visual aspects across the latent
space [71]. Our intent is to identify general principles that afford
direct manipulation for decomposing and (re)composing objects at
multiple levels of granularity for different tasks and contexts.

The interaction model we propose provides a generic solution
to address these 5 challenges by building upon the instrumental
interaction model and apply it to the context of building interactive
applications leveraging generative AI capabilities.

2.2 Interaction Models in the Era of AI
Despite tremendous advances in technology and the promise of
Artificial General Intelligence [11], mainstreams interfaces today
feature a chat-based interface with AI reminiscent of command-line
human-computer interaction paradigm of the 1960s. While the use
of natural language does remove barriers of adoption for the gen-
eral public, many of the limitations of communicating instructions
in a linear and sequential manner by typing, later addressed by
Graphical User Interfaces, pertain.

Over the years, the HCI community has produced knowledge on
human-computer interaction [31], devised principles and theories
for improving interaction [25, 33], and proposed multiple interac-
tion models [5, 36] for building the next generation of interfaces.
These models are generally grounded in the emerging interfaces
and techniques of the time, surfacing key principles governing
them and desirable properties when humans interact with them.
The goal of these models is to inform and assess the design of the
next generation of interfaces. Our work has the same ambition: in-
forming and guiding the design of interfaces leveraging generative AI.
While numerous recent work centered on advancing specific use
cases and application areas – seeking to identify and leverage the
value of generative AI – few researchers relate to existing theory
and models, or proposing new theories and models in this era of AI.
Perhaps the closest effort is the Cells, Generators, and Lenses model
proposed by Kim et al. [39] which proposes a design framework
for helping designers identify and reflect on basic building blocks
needed for interfaces leveraging AI. Our research is complementary
to this effort, seeking to identify interaction principles that afford
direct manipulation of these building blocks.

Our work seeks to build upon and extend the instrumental inter-
action model to the design of generative AI interfaces. The instru-
mental interaction model [5] directly builds upon direct manipula-
tion and generalizes the use of instruments to mediate between user
and objects of interests (e.g. content). It describes a large range of
interaction techniques that were not captured in WIMP and direct
manipulation such as lenses or tangible interactions. Recent work
attempted to leverage the instrumental interaction model to design
novel interactions with AI. For example, Yen and Zhao [77] used

reification to turn prior conversations with AI into graphical objects
or Memolets, that users can interact with. Our work propose a more
general adaptation of this model to content generation with AI and
expands it with additional principles of reflection and grounding.
The resulting model we propose falls into generative theories of
interaction [6], aiming at inspiring and informing the design of
novel techniques.

2.3 Content Generation and Creativity Support
Several key insights from the design and creativity support litera-
ture [62] motivate our principles of reflection and grounding.

Design and creativity processes embrace ambiguity of low-fidelity
prototypes [12] and rapid cycles of idea generation and evalua-
tions [26, 28, 67] to enable people to explore many design alter-
natives, reflect on their possibilities through the action of sketch-
ing and building, and iterate on the most promising ones [61].
Researchers have also described these processes as sequences of
divergent thinking followed by convergent thinking [21]. As funda-
mental working-patterns that people exhibit in challenging content
creation and design tasks, there is good reason to believe such pro-
cesses should persist and be supported by tools for creative content
generation with generative AI. Such tools should help users rapidly
investigate alternatives ideas in fluid, non-linear manner (e.g. ex-
ploration) and support the rapid iteration of the most promising
content (e.g. steering). Direct manipulation and instrumental in-
teraction models offer a compelling point of departure, affording
chunking and phrasing [14] of complex generative-AI interactions
for exploration and steering.

As hinted above, our principle of reflection builds on Schön’s
notion of reflection-in-action [61]—where the externalized materials
of design "speak to" the designer to help them reflect-on-action as
to the next design "move" to make within an ambiguous space of
many possible ideas. In the context of generative AI, this principle
of reflection conveys the notion that instruments should reflect the
design space of user intent—as well as the wide potential space of
generated results—to help users make informed decisions ("moves")
as they iterate towards a desired (AI-assisted) outcome. A related
concept to reflection and idea incubation is the process of gathering
inspirational materials in moodboards [12, 15]. Such design prac-
tices help identify concepts and themes, especially when these are
hard to articulate in words, or isolate from one another other [23].
We refer to this activity in our principle of grounding, to convey
the idea that instruments can extract specific aspects from a set of
materials, and to then apply them to different content.

An aspiration for an interaction model geared on content gen-
eration is to afford power to their users [43]. In particular, vertical
movement (moving up and down the abstraction ladder) afforded
by natural language input of LLMs; and horizontal movement (com-
posing tools and workflows) afforded by combining instruments
together offer promising avenues for AI-instruments.

3 Example Walkthrough
Let us take the example of Emma, who is seeking to illustrate a
social media post to express the serenity she feels when she spends
time outdoors (Figure 2). She starts from leveraging generative
AI to generate a bird. The art style is not quite satisfying but she
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Figure 2: Sequence of interactions to explore ideas with generative containers and lens probes: When dragging an image into
a container (1), variations are created based on style (2). When selecting one of these images and dragging it into another
container with the prompt "different types of bird", variations of different kinds of birds are generated in a consistent art style
(3). A transformative lens around one of the earlier images generates a landscape around the bird through inpainting (4), and
allows more complex composition of content (5, 6).

Figure 3: Sequence of interactions to steer image generationwith fragments and brushes probes: Prompt fragments are generated
for an existing image and show dimensions of the image to manipulate (1). A person can modify any of these fragments and a
new image is generated (2). Containers can generate variations of fragments, which are then used to modify the image (3).
Fillable Brushes (pen-like instruments) are used to modify the image of a castle, changing the art rendering style and color
where the brush painted over the image, based on the prompt that was ’filled’ into the pen (4, 5).

is not sure what the model is capable of. She selects a generative
container from a panel of AI-instruments available to her (Figure 2.1
and 2) and explores different art styles. She finds a simple drawing
style she likes, and creates a second generative container to explore

other types of birds in the same style (Figure 2.3). She settles on
a heron, and moves on composing a more interesting illustration.
Since she has an idea of the general composition she wants, she
opts for a transformative lens, a second AI-instrument enabling her
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to position her central character, the bird, in the frame (Figure 2.4).
She creates multiple lenses to try multiple backdrops and settles on
the forest one (Figure 2.5). As lenses can be layered, she creates a
color style one, and layers it on top of the forest backdrop, resulting
in an illustration she finds suitable for her post (Figure 2.6).

Two days later, Emma seeks to illustrate her school presentation
on medieval castles (Figure 3). She starts from a drawing generated
by AI. She taps-and-holds to expand the fragments the model used
to generate the image (Figure 3.1). By tapping on different frag-
ments, she gets to try different variations, such as redrawing the
castle as watercolor style (Figure 3.2). As she wants to add color
to the illustration, Emma retrieves the palette where she saved
multiple fragments related to colors she thought worked great in
the past (Figure 3.3), and drags one onto the image. She does like
the colors but notices a large white space in the back. She selects
a fillable brush, an AI-instrument that lets her directly scrub over
the specific portions of the image that she wants to revise or refine
(Figure 3.4). After she types the outcome she wants and brushes the
region, the system generates a mask and applies changes locally
(Figure 3.5). Emma is now satisfied with her illustration.

4 Instrumental Interaction with AI
Beaudoin-Lafon defines instruments as: "a mediator or two-way
transducer between the user and domain objects." we expand this
definition to AI-instruments: "an AI-powered mediator or two-way
transducer between the user and domain objects." We describe below
the three principles of our proposed model revision: reification of
user intent, reflection and grounding. Note that these principles
are tightly interconnected and, while differing in certain aspects
from the original model also share a lot of similarities. We discuss
differences in more depth in Discussion.

4.1 Reification of User Intent
Most pre-AI interfaces offer a finite set of functionalities, estab-
lished at their design by software architects and developer. User
experience designers craft a set of graphical interface components
and interactions for each functionality to enable users to invoke a
finite set of commands through this GUI. Today, LLMs can inter-
pret requests from users in natural language and turn them into
the execution of a specific command, or a sequence of commands,
unbounding functionalities from a limited set of GUI components.
With this major shift in interface design, we propose the reification
of user intent, rather than commands.

Reification turns both input and output of generative AI into
graphical elements that can be directly manipulated and thus reused
by users. In contrast to chat-based interfaces consisting of sequences
of [input+output] in which users can require to rephrase the in-
put to iterate, reifying input and output enables users to articulate
phrases of interaction [14] and afford direct manipulation tech-
niques such as lasso selections to specify scopes of intent (Figure 4
(1-3)). In section 5, we demonstrate how this instrumental model
can leverage the full range of direct manipulation techniques the
community developed such as magic lenses [8] and attribute ob-
jects [74], turning them into AI-instruments encapsulating user
intent.

A key capability of generative AI models is their inherent ability
to deal with the degree of abstraction of user intent. It offers
unparalleled flexibility as users can express high-level or low-level
intent. Examples in the literature leverage the high degree of ab-
straction for content generation. For example, Talebrush [18] en-
ables users to control the narrative arc of a story (where tension
is in the story), which has many implications on the writing itself
from adding or sequencing events differently in the story to subtly
rewording the language. Expressing high-level intents is a powerful
ability, enabling people to shape content in ways that potentially
lead to serendipitous discovery of alternative (potentially better)
results. However, users face multiple challenges when results are
unsatisfactory, understanding how to resolve ambiguity of their
intent (C2) or thinking more crisply of the desired outcome (C3).
These challenges often require users to lower the degree of ab-
straction of their intent. On the contrary, expressing intents with a
low degree of abstraction lowers the chance to make serendipitous
discoveries, as well as get into a class of unwanted model results,
making it frustrating for users to steer content generation towards
more major changes (C4) or conduct exploratory workflows (C5).
These challenges often require users to increase the degree of ab-
straction of their intent. Figuring out how to navigate degrees of
abstraction is a challenge in itself. Users may struggle turning an
idea into a set of concrete changes or, conversely, articulate the
overarching goal motivating specific changes. Users can leverage
AI-instruments themselves to navigate the degree of abstraction of
an intent, for example, by using a Generative Container to provide
more concrete (resp. abstract) Fragments given one of high-degree
(resp. low-degree) of abstraction (Figure 4 (4-5)).

4.2 Reflection
Seminal research demonstrated that it is critical to explore alter-
native designs early and throughout the whole process [49, 69]. It
is particularly critical when working with AI because of its "black
box" nature [4, 30], i.e. the inherent difficulty for users to under-
stand how these models work, and the non-deterministic nature of
their outputs. To capture this aspect, we borrow the term reflec-
tion from the design literature and introduce it as a principle for
AI-instruments.

We define reflection as the ability to help users reflect on their
possibly ambiguous intent (reflection-in-intent) as well as the am-
biguous interpretation made by AI (reflection-in-response), and
thus offer the ability to users to steer the content generation to-
wards a satisfying result.

Reflection-in-intent is the ability of AI-instruments to surface
multiple facets of their intent to users. For example, fragmenting
intent into pieces reveals a particular chunking [14]. Working with
fragments (Figure 5) may help users refine their intent (1), pivot on
a specific aspect (2) or iterate by adding novel aspects (3).

Reflection-in-response is the ability of AI-instruments to of-
fer multiple results of the content generation, while also helping
people explore the space of possibilities (Figure 5), addressing
(C3).Reflection-in-response can vary on the type and range of al-
ternatives provided by employing diverse strategies: using model
parameters such as its temperature, generating variations of the
input, or asking the model to use different context of interpretation.
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Figure 4: In the chat-based interaction model, interactions
consists of a linear sequence of input+output pairs and steer-
ing is done by modifying the input (1). Reification enables
articulating interactions into phrases for example by reusing
the output of the prior input (2). It also affords direct manipu-
lation techniques such as for lasso selection (in red) to specify
the scope of the input (3). Reification of user intent enables
users to reflect on their intent and navigate dimensions such
as its degree of abstraction, using other instruments to make
it more concrete (4) or abstract (5) for example.

4.3 Grounding
The principle of grounding refers to the ability for users to ground
instruments from examples of desired outcomes or other instru-
ments. It may be difficult to find the right vocabulary to describe
particular aspects of content, especially for images. Instruments
leverage AI segmentation to (1) enable users to refer to elements of
an example in generic terms, and (2) extract specific aspects of the
content (e.g. style) by selection, storing the result for later (Figure 6).
This builds on the notion of Variations, Parameter Spectrums, and
Side Views [34, 68], but in a way that leverages the principles of
interactive instruments [5, 7] as well as the open-ended possibilities
of generative AI via our novel AI-instruments, rather than as views
or controls with fixed, hand-designed and hard-coded options. AI-
instruments can also be grounded in other instruments, enabling
exploration of the space of related instruments (Figure 6 (3)).

5 Examples of AI-Instruments
To assess the viability of our AI instrumental model, study its differ-
ences with existing GUIs and tease out its value compare to existing
chat-based AI interaction, we built a technology probe [34] with
four different instruments, grounded in the literature: Fragments,
Generative Containers, Transformative Lenses and Fillable Brushes.
We describe below how this set of instruments surface the princi-
ples of our AI-instrumental model, as well as offer complementary
interaction capabilities and affordances.

5.1 Fragments
Fragments build on the concept of Attribute Cards introduced in
Object Oriented Drawing [74], as well as Side View’s notions of
Variations and Parameter Spectrums [67, 68], by using a large lan-
guage model to extract multiple conceptual dimensions that may
be plausibly implied by a prompt.

Fragments reify an initial prompt used to generate text or image
into a set of attribute cards, of the format [type, value] (where
type is the category of the extracted dimension, and value is the ex-
tracted value within that dimension—such as [tone, enchanting],
[content, castle] or [style, illustration]). Revealing these
conceptual dimensions enables an initial reflection-in-intent, re-
vealing the latent structure of the prompt as seen by the AI model.
Commercial software such as Adobe Firefly [1] offers a similar ca-
pability as tags, enabling users to select them from a side panel
for subsequent image generation. Applying the principle of reifica-
tion to tags and turning them into cards affords three core novel
interactions as illustrated in Figure 7.

First, users can reveal fragments via a long press on the content.
Fragments are fully reified as interactive instruments and are dy-
namically generated—hence open-ended and nondeterministic—in
contrast to the fixed, hand-crafted, and hard-coded controls sup-
ported by prior work (e.g. [35, 67, 74, 75]). Second, via drag and
drop, users may remove fragments (by dragging them away), or
add new fragments onto existing content in the work space. Adding
or removing fragments triggers regeneration of the content. Third,
to further support reflection, fragments offer suggestions on de-
mand. By tapping on , users can generate new variations from
any fragment; these suggestions appear in a column below the
specific fragment. Users can also invoke additional suggestions for
more types of fragments, which are then appended to the row of
fragments.

These three coremechanisms support a workflowwhere, as users
work with multiple images in their workspace, they can explore
the effect of different fragments via drag-and-drop to ground one
image generation into an aspect of another.

Fragments use the affordance of attribute cards to break down
and reify a complex intent into manageable pieces, each having
distinct type and value, that enable people to work with these
as more-or-less independent and composable, "pieces of intent."
This also encourages a workflow where users can surface useful
fragmentary concepts surface that become reusable and specialized
instruments in their own right. Such fragments are then available
for reapplication to other pieces of content, or even reuse in a
different context.
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Figure 5: Reflection-in-intent enables users to gain awareness of the possible formulations of their intent while reflection-in-
response enables users to assess the space of possibilities of the outputs generated by the model given an input. These aspects
may help users address the challenges of intent disambiguation, resolution and steering.

Figure 6: Grounding an instrument such as a generative container with an example enables to refer to features to preserve
or alter in simple worlds by leveraging AI segmentation (1). Grounding an instrument such as a fillable brush in a specific
aspect of an example, for example by selecting a region and extracting its style (2), enables users to use and apply it to other
inputs without the need to articulating it in words. The principle of grounding also applies to instruments themselves such as
deriving fragments from an example one (3).

While in principle we could have pursued a design that generated
many fragments as automatic suggestions associated with each
piece of content, such an approach would introduce clutter and risk
overwhelming the user with the "decision paralysis" of too many
choices. Our design therefore surfaces only a few fragments at a
time, and only in a post-hoc manner upon explicit invocation by
the user. Further, we present these newly-invoked fragments in an
organized fashion, with two orthogonal dimensions of exploration
on demand, by keeping dimension type in horizontal rows of cards,
and value variations in vertical columns beneath these.

5.2 Transformative Lenses
Transformative Lenses re-envision the Toolglass and Magic Lens in-
teraction technique [8] as a layered instrument that can be coupled
with a generative prompt.

Layering a Transformative Lens on top of content uses such a
prompt to generate a new image that synthesizes the lens and the
content. Likewise, a specific piece of image content can be used on
top of a lens to recombine the two. Such layerings can be positioned
and manipulated to chain multiple effects together. As illustrated
in Figure 8, users can leverage lenses to take a piece of content (e.g.
a sketch of a suspension bridge), and then re-compose this content
within a wider backdrop scene (a city skyline), or even apply a new
specific style to the results with a single interaction (e.g. a heavy,
black-lined graphic novel style).

More generally, depending on how the user layers Transforma-
tive Lenses and image content, lenses can support image completion
from a small piece of content, synthesis and composition of mul-
tiple pieces of content into a new image, or regeneration of the
underlying image. Note also that blank lenses (which have no im-
age content, but do contain a prompt) can be used. For example, a
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Figure 7: Users can expand Fragments with variations of parameter values (1) in vertical columns, or request more suggestions
for dimension types (2) at the end of the row. Users can further reuse and transfer Fragments to other content via drag-and-
drop(3).

blank-lens backdrop generated afforded outpainting-like operation
—but here steered by the lens’s prompt—to "complete" a scene from
an existing piece of image content.

Users can freely drag, reposition, and resize both content images
and lenses, layering them over each other to chain transformations,
reflect on the results, and experiment with different combinations.
This property also may encourage users to break down their in-
tent into multiple lenses, which can then be applied to multiple
pieces of content (grounding). Note that image recomposition and
dynamic regeneration occurs after a 2-second idle time to avoid
triggering constant image regenerations during dragging or resiz-
ing operations. As users may wish to adjust content under a lens
post-generation, the lens is temporarily faded out in the background
when the mouse pointer enters it.

Complementary to the Fragments described in the previous
section, Transformative Lenses afford the design consideration of
breaking down the output into pieces (whereas fragments focus on
the prompt intent). People can control the composition of images

by just moving and layering elements in relation to the lens, limit-
ing the need for precise selection, and encouraging rapid iteration
& experimentation with compositions. However, unlike an undo
operation, removing (or otherwise reverting) the layering of Trans-
formative Lens and image-content elements triggers re-generation,
and will always lead to a slightly different rendering.

5.3 Generative Containers
Designers use moodboards [12], storyboards [29], and other tech-
niques for presenting small-multiples in galleries [26, 49, 67] to
illustrate and explore a space of possible creative directions. Struc-
tured generation of those alternatives [65] allows rapid exploration
of design spaces, and techniques to highlight similarities and differ-
ences [24] facilitate the selection, refinement, and comparison of
multiple responses.

As shown in Figure 9a, Generative Containers provide an AI-
instrument that encapsulates these notions using a prompt—shown
in the container’s header—that is closely associated with a 2x2 small-
multiple grid of generated image results. Users can then enter or



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Riche et al.

Figure 8: Transformative Lenses are placed over initial content, enabling users to "complete" illustrations from pieces of content
(1). When users add elements to their composition, lenses regenerate to integrate it (2).

edit the prompt, or drag and drop example content—or even another
instrument, such as a Fragment—onto the Container to ground it
and generate a new small-multiple set of results.

We designedGenerative Containers to enable reflection-in-response,
allowing users to quickly get a visual sense of the range of responses
a single prompt might produce. And by using Generative Contain-
ers to generate different variations of fragments, for example to
obtain more concrete image editing suggestions from a high-level
intent (Figure 10 left), generative containers also enable reflection-
in-intent.

In our current implementation, the Generative Containers probe
supports generation of four different variations (in a fixed 2x2 grid).
Further, each container is presently limited to a single grounding
example as input. However, users can create multiple containers
and reuse results by dragging and dropping from one to another. In
this way Containers afford adding details and varying the prompt
to generate a range of example images, encouraging multiple cycles
of iteration. Recombining and chaining these together effectively
results in a longer, refined prompt that integrates the series of
changes from prior interactions. Furthermore, one could expand
the Generative Container instrument with other representations
beyond our 2x2 grid, such as the dimension plots or stacked vertical
dimension grids [65].

5.4 Fillable Brushes
Fillable Brushes, as illustrated in Figure 9b, offer an AI-instrument
with the semantics of an "intelligent paint brush" for style transfer
scoped to a particular spot on an existing image.

While previous work has explored brushes that can encapsulate
and integrate deterministic modes and commands [58], our Fillable
Brushes instrument applies encapsulated AI-prompts onto content

in an intelligent manner as the user scrubs over it with their pen,
finger, or other pointing device. And in contrast to the post-hoc
notion of Fragments described above, Fillable Brushes apply a brush
onto content, structured as an AI-Instrument "command" with a
prefix (as opposed to postfix) syntax [13]. This offers a familiar in-
teraction model from the way that a highlighting tool turns selected
text yellow in a document editor, for example.

Encapsulating a prompt or image into a brush to define its func-
tion is a powerful interaction techniques to control scope of se-
lection, as demonstrated by Runway motion brushes [60]. Apply-
ing additional principles of our model, enables users to also "fill"
(ground) an empty brush by using existing content as an example,
as if the instrument were a color picker that picks up key semantic
attributes of the content rather than just its "color." The prompt
encapsulated by the Fillable Brush is then automatically populated
with descriptive words via generative AI, which the user can further
edit if desired. This can be particularly helpful when users want to
style something "like this" even when they may lack the vocabulary
to describe its visual style. Our Fillable Brushes technology probe
supports both content and/or style extraction. Turning a brush into
a persistent object on screen, enables combining brushes together
by drag and drop. Brushes can also be applied multiple times to the
same content to emphasize a particular prompt in the result.

While Fillable Brushes enable users to specify the scope of in-
tent with a high granularity, this does not necessarily require high
precision: our implementation leverages the AI-powered Segment
Anything Model (SAM) [40], which enables users to make approxi-
mate selections (i.e. rather than a precise and tedious lasso selection)
to indicate an image element. The source content plus the approxi-
mate selection (as a set of reference points) is then converted into
a precise object selection by the segmentation model.
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(a) Generative containers enable users to explore possibilities on
concrete or abstract dimensions (1). Containers also afford complex
exploration paths by reusing the output of one container as the
input of another one (2), resulting in refining intent (3).

(b) Brushes can extract aspects of content difficult for users to ar-
ticulate in words, such as drawing style, making it reusable and
editable (1). Combined with the selection afforded by brushes, this
enables to apply aspects such as style to portions of images (2).

Figure 9: Generative Containers and Fillable Brushes sup-
port different types of content creation tasks. Containers
promote the exploration of multiple ideas in parallel, while
Brushes offer precise direct manipulation for steering gen-
eration. Providing users with both of these AI-instruments
enables them to conduct many different activities involved
in content creation, enabling interweaving of both divergent
and convergent thinking activities.

5.5 Generated Instruments and
Meta-Instruments

Beyond the concept of instruments, the instrumental interaction
model [5] also refers to the concept of meta-instruments, in which
"instruments operate on instruments". As hinted at in earlier sections,

using instruments on other instruments can be particularly useful
to derive or compose instruments from the "task detritus" [41]
already produced in the user’s workflow and experimentation with
other instruments. Using generative containers on Fragments, for
example, can help users navigate the degree of abstraction, turning
a vague idea into a set of concrete modifications (Figure 10 left).

However, such generation loops (instruments that generate con-
tent, generating instruments that generate other instruments gen-
erating content...) could potentially lead to an unwieldy number
of elements in the interface. To organize but also generate collec-
tions of instruments, we devised a type of meta-instrument we call
Palettes.

Akin to menus and containers available in GUIs today, Palettes
enable storage and/or generation of different sets of instruments
and content if desired. These afford abstraction and generalization
of instrumental controls from collected pieces of content that can
then serve as examples or generative seeds (Figure 10 right). Palettes
of diverse instruments can balance the different affordances and
properties of each instrument to provide rich content creation sup-
port. They can also help people get past the "cold-start" problem in
complex creative design work, by beginning with examples, other
pieces of existing content, or past work-artifacts to help overcome
so-called "writer’s block" or "blank canvas" effects of starting from
nothing.

6 Implementation
Overview: Our system and all AI-Instruments technology probes

were implemented on a web-based platform. We use Javascript
and HTML with the fabric.js [38] library for the front-end, and a
Node.js [22] server for the back-end managing content and files
as well as coordinating communication with the generative AI
models. For the user interface design, we chose to use a sketched
user interface look and feel, to encourage our study participants
to focus on the concepts rather than the surface details of their
specific instantiation in the UI [12].

Leveraging Generative AImodels: Weuse theOpenAIGPT-4o [53]
model for text transformations and image analysis, and a local Sta-
ble Diffusion [63] server with a custom processing pipeline for
image generation. The AI-Instruments use GPT-4o for analysis of
provided input (e.g., for turning provided visual content into a text
prompt, analyzing the contents of part of the workspace canvas).
For image generation, we use multiple stacked ControlNet [80]
models with Stable Diffusion to steer the generation of visual con-
tent. To preserve aspects of the source input, we use a combination
of Depth, Canny Edge, and Scribble ControlNet models, while for
preserving art/rendering styles (e.g., the sketch-based output) we
use the Reference ControlNet model. Depending on the type of im-
age generation, we vary the weight of each ControlNet model (e.g.,
increasing weight to emphasize content preservation, or decrease
weight of another ControlNet to reduce affect of reference style
transfer). We use image masks to selectively control which areas are
changed or kept, apply inpainting/outpainting scripts, and adjust
other parameters such as CFG scale, denoising strength, and control
mode.
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Figure 10: Instruments can be used as Meta-Instrument: operate on each other to create related instruments, for example
for making a fragment more concrete (left). Specific Meta-Instruments such as palettes (right) can help user organize sets of
instruments for easier retrieval and reuse, or, even help generating collection of instruments for a certain task.

Building AI-Instruments: We designed a pipeline that can orches-
trate the access and requests to the different LLM and diffusion
server instances to generate results. Key functionality is wrapped
in modules, such as for encapsulating prompts to communicate
with one or more models (by using model chaining) to perform
a specific task. Each AI-instrument then uses a number of these
modules for modifying the input or generating new content bases
on the user’s performed action with the instrument:

• Fragments instruments include modules for (1) prompt de-
composition which takes a text or visual input and makes a
GPT-4o request to generate fragments (returned as collec-
tions of [type, value] pairs), (2) fragment extension which
takes a prompt and the existing fragments and requests ad-
ditional fragment dimensions, (3) fragment variation which
takes the fragment and parent prompt/content (if applicable)
and generates variations of that fragment, and (4) prompt
composition which takes a prompt, a modification to the
fragments, and returns a modified prompt. The result from
the prompt composition is then used to create an updated
image with the Stable Diffusion + ControlNet pipeline.

• Transformative Lenses use a module for composition of the
prompt (merging prompts from all source images covered
by the lens), before then applying inpainting/outpainting,
masks, and ControlNet models to generate the resulting
image.

• Containers use a variation module, taking a prompt and
a dimension, and requesting four variations along the pro-
vided dimension. Within the prompt we request visually
diverse results. The resulting set of prompts is then sent to
SD+ControlNet to generate the final set of four images in
the container.

• Fillable Brushes are implemented to either emphasize style
or content variations, depending on the intent of the user,
which we support by varying the weight of the Control-
Net models (e.g., higher reference ControlNet weight for
changing the visual style, or increasing weight of Canny-
edge/Depth ControlNet to preserve existing content).

When the brush is applied, we perform a segmentation of the
source content by feeding the stroke path as control points
into Segment Anything [40], which results in a segmentation
mask of the dominant object(s) selectedwith the brush stroke.
We then use GPT-4o to craft a combined prompt given the
source image(s), the segmented content, and the original
prompt. Finally, we send this generated prompt together
with the source image and segmentation mask to the Stable
Diffusion server, using the ControlNet inpainting method.

7 Study
We conducted a qualitative user study with 12 participants to gather
their insights on AI-instruments compared to traditional prompting.
Participants completed image generation and editing tasks with our
four technology probes as well as an initial chat-based prompting
probe, to help them tease out pros and cons of these two different
interaction models. We analyzed their comments to understand the
perception of the principles of reification, reflection and grounding,
as well as capture insights on the Human-AI interaction challenges
(listed in Section 2.1) addressed by different instruments.

7.1 Procedure
Participants completed a 60-minute study in a quiet room on a
computer running our technological probes and a study form. After
obtaining informed consent, we collected basic demographic infor-
mation, then requested participants to complete a set of tasks with
our technological probes. All participants first completed tasks with
a chat-based prompting probe using the same image generation
model as the instruments in order for us to confirm their familiarity
with prompting and to also provide them with a baseline for the
image generation model with use. Before each instrument, partic-
ipants watched a video demonstration explaining functionalities
and modalities of interaction. After this video, participants used the
technological probes to complete 2 to 3 tasks such as generating
an image and changing its style. We provided example content
for each task, but encouraged participants to generate their own
content and try different ideas. The experimenter only interacted
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with participants during this phase of the study to clarify function-
alities and interaction if needed. After each set of tasks, participants
reflected on one key advantage and on key inconvenient of this
specific instrument compared with the chat-based prompting in-
terfaces. Since we aimed at gathering qualitative insights on the
overall interaction model behind instruments rather than compare
instruments against each other, all participants completed the tasks
in the same order. After tasks completion, we described five types
of generic tasks, asking for each to select the best interaction tech-
nique. Participants also entered the rationale for their choice. At the
end of the study, participants received a $50 gratuity for their time.
The study protocol was reviewed and approved by the Microsoft
Research ethics review board.

7.2 Participants
We recruited 12 participants (8 men, 3 women, 1 non-binary) via
mailing lists in a large organization. We selected participants with
weekly interaction with generative AI systems (ChatGPT, stable dif-
fusion, etc) for creating content. As we aimed at gathering insights
on overarching interaction principles for AI-instruments (across
many domains), we opted for selecting participants with interest-
ing in different types of content generation. Our participant pool
included users interested in authoring short text snippets such as
emails, long structured documents such as reports, structured text
such as tables, programming code and web-pages, visual artifacts
such as images, and multimodal artifacts with text image and charts
such as presentations. Note that none of our participants generated
audio or video.

7.3 Material and Analysis
We collected the salient advantage and salient weakness for each
instrument compared to prompting. Participants experienced the
following probes: 1) chat-based prompting, 2) fragments, 3) contain-
ers, 4) lenses, and 5) brushes. To encourage participants to think
of different aspects of content generation, we asked them their
preferred interaction technique (along with their rationale) for five
different tasks.
T1 Combining content: merging pieces of content together
T2 Splitting content: extracting a piece of content
T3 Iterating on content: editing an aspect of content
T4 Editing by example: transferring content or style
T5 Expanding content: adding new material to existing content

We coded a total of 156 statements from our participants to gain
insights on their perception of our model’s principles and to assess
how AI-instruments (un)successfully addressed the five challenges
described in section 2.1. A portion of these comments (28/156)
also revealed limitations of our technical probes (the codebook is
available at https://hugoromat.github.io/ai_instruments/).

7.4 Insights on Model Principles
Reification of intent. All 12 participants reacted positively to

the principle of reifying intent into AI-instruments. Participants
valued that AI-instruments enabled them to shift the focus from
the prompt to the outcome. P6 commented that "I can just click on
the fragments instead of typing it out and focus on the final output
instead.". P10 noted it was helping them with the iterative process:

"with prompting it makes me think of the prompt, but having [frag-
ments] already in front of me can make it easier for me to make a
decision of what i want.". They also valued the direct interaction
afforded by AI-instruments: "[with fillable brushes] you can interact
with the images that are generated directly, rather than [modifying]
the image only from prompting."

A few participants also outlined the value of reification for stor-
ing and reusing prompts. P9 commented on Fillable Brushes "[...] I
would be able to create a [brush] with the thing that I wanted to pull
out and then apply/store it however I wanted.", and P11 on Trans-
formative Lenses "I like the idea of creating and saving a lens and
applying it consistently to different images for future uses".

All 12 participants also commented on scope of selection as a
key advantage of AI-instruments over prompting (38 comments).
Participants identified Fillable Brushes as enabling them to specify
portion of an image while Transformative Lenses enabled them
to combine multiple images together. With Brushes, participants
emphasize the granularity of the selection. For example P1 noted "I
can highlight the part of the image that requires changing only, and
it seems I can highlight at a very high granular level, such as a face
of a dog." P7 referred to this capacity for steering image generation
as one can use masks in graphics editors "I can control a more fine
grained area/mask that I want to edit. It’s so cool! " P4 noted Lenses
were particularly useful for adding elements iteratively: "about how
to incrementally add new items from an initial picture, the others
[AI-instruments] are more for customize different picture styles". In
addition, participants appreciated controlling image composition
with Lenses, as P2 explained: "Being able to specify the location of
component objects is really helpful".

Reflection. All 12 participants pointed to reflection-in-intent
as an advantage of AI-instruments in contrast to prompting (31
comments). This principle was particularly highlighted as a strength
of Fragments (24/31 comments), as P5 explained "I could tell what
the different aspects of the prompts were being split [...] and guess
what the AI interpreted as something other than what I had in mind."
Participants also praised the benefit of generating variations for
each fragment such as P11: "the system generates ideas for you which
you can implement, allowing you to add variables which you might
not have originally thought of."

All 12 participants also outlined reflection-in-response as an
advantage of AI-instruments in contrast to prompting (31 com-
ments). Generative Containers were mostly (26/31) cited for this
ability. P5 explained that "Usually I ask AI to give me a different
version/example [of text], but this would allow you to choose the one
you like without needing to prompt it again." P2 valued this ability
for iterating: "[generative containers are a] great abstraction for de-
ciding what to iterate on given multiple possibilities. Makes it easier
to visualize or use results from previous steps".

Grounding. All 12 participants identified grounding as an ad-
vantage of AI-instruments over prompting (45 comments). It was
especially noted valuable for images, as P4 explains "apply styles
of different pictures into other ones, sometimes the styles are hard to
illustrate in prompting, since they are more abstract".

A majority of participants referred to grounding as a key advan-
tage of Fillable Brushes. P8 referred to grounding for dealing with
multiple items: "[...] having the flexibility to copy any kind of prompt

https://hugoromat.github.io/ai_instruments/
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on the brush is good if I have similar kind of images to replicate."
P9 referred to grounding for iterating on a single item: "[brushes]
can give us a style for A (which we can store and ensure that it gets
applied to all our later additions.)".

Model limitations. We gathered 20/156 comments pertaining
to the model limitations.

Four participants described limitations of GUIs compared to
chat-based conversational interactions with AI. For example, P11 de-
scribed accessibility issues of relying on 2D interactions as opposed
to the ability to rely solely on speech as is easily feasible with chat-
based prompting interaction. P2 mentioned AI-Instruments would
suffer from the same issues they encountered with GUIs: "GUIs in
general are more prone to bugs or unexpected behaviors than text
interactions, which could lead to increased computation that the user
doesn’t actually want". And P10 noted that they felt they needed to
perform many interactions "compared to prompting, where I can just
type something", P12 concluding that "It’s faster to get exactly what I
want with prompting". These comments do not address fundamental
limitations of the instrumental model per say but rather highlight
that users may sometimes prefer a single albeit limited modality of
interaction. These insights hints at the need to integrate chat-based
prompting interaction more tightly with instruments. A straightfor-
ward avenue for this, is to provide on-demand access to underlying
textual prompts generated by instruments.

P6 noted that "It might be better to write a new prompt when I
need to make major modifications to the output" as a drawback of
Lenses. This echoes the sentiment of three other participants in that
the grounding capabilities of AI-instruments such as Lenses and
Brushes enable effective content generation steering but may hinder
divergent content generation. However, this is also balanced by the
strengths of other AI-instruments such as Generative Containers
that many participants praised for "creative and exploratory set-
tings." (P12). These insights hints at the need to provide multiple
instruments to users in content generation tools.

We devised our four AI-instruments to cover different facets
and tasks involved in content creation. For example, Containers
supports iterative exploration by reusing pieces of content in other
Containers, while Fragments enables it by selecting different aspects
to vary. The different design decisions tied to the affordances of
each instrument led to different task support, especially with regard
to navigating creation history. This caused occasional frustration
for Fragments or Lenses "Old edits get lost when new edited are
prompted" (P7). Two participants reflected on this strength of chat-
based prompting interfaces to inherently provide a trace of all
the prompts and results made in a temporal manner. Especially in
the context of non-deterministic outputs, where the next piece of
content may be less satisfactory than the prior one, these insights
suggest that more thoughts need to be devoted to systematically
surface history within each instrument.

Note that a majority of aspects participants did not value for
AI-instruments (28/48) pertained to the limitations of our technol-
ogy probes rather than limitations of the model. Many of these
comments referred to usability issues such as the fact that Lenses
regenerated too early (or too late) or exclusively had a square aspect
ratio, as well as visual look and feel of the probes "color the pens
maybe? easier to organize and distinguish them"(P7).

7.5 Challenges Addressed by AI-instruments
C1 Intent formulation. Participants highlighted grounding

to address intent formulation on images, especially as instanti-
ated in Fillable Brushes for extracting and transferring styles. P7
summarized how Brushes help formulate intent with both scope
of selection and direct manipulation: "I can control a more fine
grand area/mask that I want to edit. It’s so cool! I can also copy the
style/content from a different image and directly apply it to a different
image without having to find the accurate words to describe them."

C2 Intent disambiguation. Participants identified grounding
and reflection as core principles helping them disambiguate their
intent. They explained that the reflection-in-intent surfaced in Frag-
ments was helping them identify context and details to refine their
intent. P5 also noted that Fragments enabled to experiment and
gain an understanding of how the model worked "allow[ing] me to
see how the prompts were being isolated and used". A few participants
also explained that Brushes helped with intent disambiguation by
capturing one by example and expressing it words. P1 summarized:
"one advantage [of brushes] is that it can identify a style, even though I
cannot articulate the style well, this is especially helpful to circumvent
prompt engineering."

C3 Intent resolution. Participants outlined the principles of
reification and reflection as most useful for resolving intent.
Participants explained that reification enabled them to explore
different paths by iterating on different images: "this lets you build
off of previous iterations and you can create different styles for the
same image until you are happy with one". They highlighted the
benefit of reflection-in-response of Generative Containers to help
them explore possibilities:"I don’t have to think too much about what
I want, which is helpful" (P10), "Very easy to explore creative options,
it helps to get a better idea of what you like" (P12). P7 valued the
ability to start from high-level prompts and follow up by making
a selection "It it easy to generate images with a vague description,
and offer options [to explore]". A few participants also mentioned
the benefit of reflection-in-intent of Fragments to experiment with
options: "[Fragment] also suggests some dimensions to change the
picture which I might have not thought about. Like the elephant in
this case." (P9).

C4 Steering. All participants mentioned the benefit of instru-
ments over chat-based prompting for steering content. Participants
noted that direct manipulation and scope of selection afforded by
reification were critical in editing portions of content, in conjunc-
tion with grounding to capture and transfer aspects of one content
to another. Many participants outlined the value of Brushes and
Lenses to generate masks for steering content generation "masking
[with lenses] allows me to personalize smaller parts of the image
compared to generating a completely new one" (P10), "this [brush]
is an advanced way to mask out single things within an image to
regenerate" (P3). P6 summarized the benefits of these instruments
compare to chat-based prompting: "[with brushes] I can quickly
make modifications to the image instead of writing a prompt from
scratch for every modification. I can focus on the subject I’m interested
in."
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C5 Workflows. Participants perceived that AI-instruments sup-
ported two workflows that were currently hard to achieve with
chat-based prompting interaction: non-linear exploration and
iterative content generation by chaining prompts together (e.g.
steering). For exploration, participants each favored different instru-
ments. P6 favored Fragments "I feel this [fragments] makes it easy
to try out different examples that I might be interested in. I can just
click on the fragments instead of typing it out and focus on the final
output instead.". P3 described Containers allowing "more freedom
to explore more options. Downside to prompting is that you need to
know what you want." P8 valued "trying different lenses on the same
component creating a scene is easy way to experiment and merge
different style in one". P8 also referred to the grounding capabilities
of Brushes as useful to experiment with the collection of examples
offered "different kinds of image styles to choose from for copying
styles or format". For iterative content generation, participants refer
to the same advantages AI-instruments offer than for steering.

8 Discussion and Future Work
We first discuss how our model revisits and extends the classic
instrumental interaction model, then discuss the application of
AI-instruments to different forms of content, outlining future work.

8.1 Revisiting and Extending the Instrumental
Interaction Model

The instrumental interaction model [5] is based on three core prin-
ciples [7]:

• Reification of commands refers to the principle of turning
systems functionalities into interactive graphical objects in
the interface,

• Polymorphism refers to the principle of applying commands
to different types of objects enabling the interface designers
to keep the number of interface objects relatively small,

• Reuse refers to the ability for users to reapply one command
to different objects or apply different commands to one ob-
ject, with the goal of limiting repetitive user input and/or
navigation.

In this paper, we revisited and proposed to extend this model in
the following ways:

(1) We extended the principle of reification from encompassing
a limited set of commands defined for an application to include any
intent user may express in natural language. We also unpack two
key considerations of reification that one should consider when
designing AI-Instruments: the scope of the instrument, and degree
of abstraction. We propose to leverage the affordances of existing
direct manipulation techniques to convey to users how to specify
scope (e.g. select a portion with a brush vs resize the lens). To
support users navigating different levels of abstraction of their
intent, we propose to use AI-instruments themselves.

(2) We re-framed the concept of polymorphism in instrumental
interaction, recasting it as reflection. This shifts instrumental inter-
action from a classic "direct manipulation" technique for graphical
user interfaces to a modern AI-augmented technique. Reflection
leverages the general concept-translation capabilities of LLM’s to
support an expansive notion of "polymorphism" without requiring

the interface design and system architect to hand-code the parame-
ters, controls, and nuances of how these are interpreted across a
wide range of content types.

Further, by considering reflection from both the user (intent)
and system (response) perspectives, we provide users with mecha-
nism to explore both the design space of their intent (i.e. different
formulations and disambiguation of intent), as well as the design
space of the model response (i.e. different interpretations of user
intent by the model). While such notions, in one sense, have been
latent in interactive instruments all along, with generative AI many
possible forms and interpretations of polymorphism—potentially
even for niche or specialized workflows, formats, and types of con-
tent, if they are sufficiently represented in the training data for
the model—can be made available for user reflection in AI-assisted
content creation.

(3) The third principle of reuse is closely related to our principle
of grounding. Grounding extends the notion of reusing commands
to the capability of extracting and reusing intent—whether in terms
of one aspect of user intent, a collection of multiple user intents,
or other properties of content. This principle of grounding also
encapsulates the ability to generate instruments from other instru-
ments, characterized as meta-instruments in the nomenclature of
instrumental interaction [5, 7].

(4) A further new challenge raised by AI-instruments is the
need to balance the possibility of over-generating instruments,
with the power to encapsulate many capabilities—at a high level of
abstraction—within a single instrument. In contrast to classic hand-
crafted instrumental interaction, AI-generated instruments could
potentially lead to an unwieldy number of objects in the workspace,
if generation were left unchecked. However, we counterbalance
this with strategies to compose instruments and organize them
into collections (meta-instruments). Further, we can leverage the
generative nature of AI to iteratively refine both content and (meta-
)instruments—altering, summarizing, or abstracting instruments
and content with each step—as another strategy to harness AI to
express aggregated concepts at a high semantic level.

The insights we gained by building a set of technology probes
and gathering initial perceptions of 12 content creators, suggest that
the principles described in our model can be used inform the design
of novel interaction techniques as well as assess existing ones. As
we built each probe, it became clear that design decisions at lower-
level, for example pertaining to the specific choice of interactions
(e.g. click vs double-click) or their timing (e.g. idle time threshold
triggering image generation), can lead to different experiences, es-
pecially when multiple probes are used in conjunction. While our
model suggests overarching principles for AI-instruments, specific
interaction is bound to differ as sets of these techniques are inte-
grated into specific applications and adapted to different modalities
and contexts [3, 46].

Additional considerations for integrating AI-instruments in ap-
plications include the expectations of users with regard to direct
manipulation and instrumental interfaces, as well as when working
with AI. For example, a fundamental principle of direct manipu-
lation is ease of reversibility of user actions (e.g. if a fragment is
removed from an image triggering a new generation, then added
back; the image should revert to its prior state). In contrast, AI
models are non-deterministic by nature (e.g. same input, different
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output). While it is technically feasible to couple AI generation
with history and versioning mechanisms to ensure the reversibility
of operations, users’ attitude on working with AI over the longer
term, as well as specific use cases may impact this design decision.

8.2 Beyond Images, Applying AI-Instruments to
Other Forms of Content

While extrapolations from participants must be taken with caution,
four participants in our study related the use of AI-instrument to
content they worked with every day. Interestingly two participants
(P2 and P9) commented they would not see the use of instruments
for tasks such as writing code. P9 summarized it as "it [fragments] is
a bit harder to use than prompting for tasks like maybe writing code. I
would prefer fragmenting for images or plots". However, two different
participants (P11 and P12) envisioned using AI-instruments for
data analysis and writing (P11) and in the case of P12 leveraging
grounding for operating at the artifact level: "it would be so cool
to auto-pick a style (words, design, etc) without me first having to
decipher it, and then have it automatically apply to other content
(writing, slides, etc)".

We experimented with a few of our technology probes (Frag-
ments, Containers and Palettes) to work with textual content and
found that our principles generally held. However, further explo-
ration with different types of modality is likely to reveal additional
design considerations for the instruments we proposed. Notably,
a key issue to address for textual content as opposed to images
is the effort required to consume a number of potential outputs
(reflection-in-response). Integrating support for helping user skim
and get the gist of similarities and differences between textual
outputs in Generative Containers (by bolding portions of text or
providing summaries or excerpts) would certainly be necessary
when using instruments to work with textual documents.

Another aspect to address is the use of instruments for artifacts
composed of multiple pieces of content (e.g. a slide composed of
a title and image). Again, while we believe core principles hold
for devising instruments to work with content at the artifact level,
additional research is needed to delve into how to integrate different
aspects of an artifact. For example, one could envision displaying
Fragments from different scope of selection, enabling Fragments to
operate at the entire slide level or on a subset such as title.

In the future, we plan to pursue these two research directions
(designing AI-instruments for heterogeneous content and artifacts
composed of multiple pieces of content), further assessing the gen-
eralizability of our interaction model and broadening the set of
design considerations for AI-instruments.

9 Conclusion
We operationalized the theory of instrumental interaction for gener-
ative AI, with an in-depth unpacking of the principles of reification
of user intent, reflection, and grounding. We argue that leveraging
this re-appropriated and refined theory can drive the creation of
a new generation of expressive AI-Instruments that afford better ex-
pression of intent, make it easier to discover what is possible, and
provide powerful degrees of freedom for steering the generation
towards the best possible results. Those new tools and instruments
can truly leverage the polymorphic and non-deterministic behavior

of generative AI models, unleashing new and empowering forms
of expressive HCI+AI experiences.

Beyond our focus on AI-Instruments, theories play an impor-
tant role in the advancement of our wider research field [27, 57].
Rogers argues that there is a need for theories as lenses bringing
critical design characteristics into focus, and which can function as
a generative source: providing "design dimensions and constructs to
inform the design and selection of interactive representations" [56].
We hope that our work on operationalizing the theory of instrumen-
tal interaction for AI can inspire other new – and re-appropriated –
theories to advance HCI+AI.
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